371 research outputs found

    Comparing the expressive power of the Synchronous and the Asynchronous pi-calculus

    Full text link
    The Asynchronous pi-calculus, as recently proposed by Boudol and, independently, by Honda and Tokoro, is a subset of the pi-calculus which contains no explicit operators for choice and output-prefixing. The communication mechanism of this calculus, however, is powerful enough to simulate output-prefixing, as shown by Boudol, and input-guarded choice, as shown recently by Nestmann and Pierce. A natural question arises, then, whether or not it is possible to embed in it the full pi-calculus. We show that this is not possible, i.e. there does not exist any uniform, parallel-preserving, translation from the pi-calculus into the asynchronous pi-calculus, up to any ``reasonable'' notion of equivalence. This result is based on the incapablity of the asynchronous pi-calculus of breaking certain symmetries possibly present in the initial communication graph. By similar arguments, we prove a separation result between the pi-calculus and CCS.Comment: 10 pages. Proc. of the POPL'97 symposiu

    Making Random Choices Invisible to the Scheduler

    Get PDF
    When dealing with process calculi and automata which express both nondeterministic and probabilistic behavior, it is customary to introduce the notion of scheduler to solve the nondeterminism. It has been observed that for certain applications, notably those in security, the scheduler needs to be restricted so not to reveal the outcome of the protocol's random choices, or otherwise the model of adversary would be too strong even for ``obviously correct'' protocols. We propose a process-algebraic framework in which the control on the scheduler can be specified in syntactic terms, and we show how to apply it to solve the problem mentioned above. We also consider the definition of (probabilistic) may and must preorders, and we show that they are precongruences with respect to the restricted schedulers. Furthermore, we show that all the operators of the language, except replication, distribute over probabilistic summation, which is a useful property for verification

    Constructing elastic distinguishability metrics for location privacy

    Full text link
    With the increasing popularity of hand-held devices, location-based applications and services have access to accurate and real-time location information, raising serious privacy concerns for their users. The recently introduced notion of geo-indistinguishability tries to address this problem by adapting the well-known concept of differential privacy to the area of location-based systems. Although geo-indistinguishability presents various appealing aspects, it has the problem of treating space in a uniform way, imposing the addition of the same amount of noise everywhere on the map. In this paper we propose a novel elastic distinguishability metric that warps the geometrical distance, capturing the different degrees of density of each area. As a consequence, the obtained mechanism adapts the level of noise while achieving the same degree of privacy everywhere. We also show how such an elastic metric can easily incorporate the concept of a "geographic fence" that is commonly employed to protect the highly recurrent locations of a user, such as his home or work. We perform an extensive evaluation of our technique by building an elastic metric for Paris' wide metropolitan area, using semantic information from the OpenStreetMap database. We compare the resulting mechanism against the Planar Laplace mechanism satisfying standard geo-indistinguishability, using two real-world datasets from the Gowalla and Brightkite location-based social networks. The results show that the elastic mechanism adapts well to the semantics of each area, adjusting the noise as we move outside the city center, hence offering better overall privacy

    Bounds on the leakage of the input's distribution in information-hiding protocols

    Get PDF
    International audienceIn information-hiding, an adversary that tries to infer the secret information has a higher probability of success if it knows the distribution on the secrets. We show that if the system leaks probabilistically some information about the secrets, (that is, if there is a probabilistic correlation between the secrets and some observables) then the adversary can approximate such distribution by repeating the observations. More precisely, it can approximate the distribution on the observables by computing their frequencies, and then derive the distribution on the secrets by using the correlation in the inverse direction. We illustrate this method, and then we study the bounds on the approximation error associated with it, for various natural notions of error. As a case study, we apply our results to Crowds, a protocol for anonymous communication

    Recursion vs Replication in Process Calculi: Expressiveness

    Get PDF
    International audienceIn this paper we shall survey and discuss in detail the work on the relative expressiveness of recursion and replication in various process calculi. Namely, CCS, the pi-calculus, and the Ambient calculus. We shall give evidence that the ability of expressing recursive behaviour via replication often depends on the scoping mechanisms of the given calculus which compensate for the restriction of replication

    A randomized encoding of the pi-calculus with mixed choice

    Get PDF
    International audienceWe consider the problem of encoding the pi-calculus with mixed choice into the asynchronous pi-calculus via a uniform translation while preserving a reasonable semantics. Although it has been shown that this is not possible with an exact encoding, we suggest a randomized approach using a probabilistic extension of the asynchronous pi-calculus, and we show that our solution is correct with probability 1 under any proper adversary wrt a notion of testing semantics. This result establishes the basis for a distributed and symmetric implementation of mixed choice which, differently from previous proposals in literature, does not rely on assumptions on the relative speed of processes and it is robust to attacks of proper adversaries
    • …
    corecore